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The evolution of travelling waves in
reaction—diffusion equations with monotone
decreasing diffusivity. I. Continuous diffusivity
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We examine the effects of a concentration dependent diffusivity on a reaction—
diffusion process which has applications in chemical kinetics. The diffusivity is
taken as a continuous monotone, a decreasing function of concentration that has
compact support, of the form that arises in polymerization processes. We consider
piecewise-classical solutions to an initial-boundary value problem. The existence of
a family of permanent form travelling wave solutions is established, and the
development of the solution of the initial-boundary value problem to the travelling
wave of minimum propagation speed is considered. It is shown that an interface will
always form in finite time, with its initial propagation speed being unbounded. The
interface represents the surface of the expanding polymer matrix.
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1. Introduction

There is a variety of chemical, biological and physical processes that can be modelled
as simple closed systems in which the competing effects of reaction and diffusion
predominate. One feature of the interplay between reaction and diffusion, which is
often visible in laboratory experiments, is the formation of travelling chemical wave
fronts. Well known examples of this are the spread of an advantageous gene through
a population (Fisher 1937) and autocatalytic chemical systems such as the
iodate—arsenous acid reaction (Hanna et al. 1982). Surveys of reaction—diffusion
models in chemistry and biology can be found in Winfree (1980), Jones & Sleeman
(1983), Murray (1989) and Gray & Scott (1990). In these works attention is generally
focused upon systems in which the diffusivity between the reacting elements is
constant. Some mention of the effects of variable diffusivity can be found in Murray,
but discussion is limited to power law type behaviour in which the diffusivity
vanishes as the concentration vanishes. A recent study of the evolution of initial data
onto a travelling wave for this case can be found in King & Needham (1992).

In this paper we study the reaction—diffusion process in the case where the
diffusivity vanishes at a finite and non-zero concentration. To motivate physically
the study of such systems it is worth remarking on some basic facts concerned with
the chemical process of polymerization in which the diffusivity may take on this
form. A polymer is a large molecule formed by the linking together of a number of
smaller molecules called monomers. Our attention here is restricted to radical chain
polymerization (Odian 1970), which consists of initiation, propagation and
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termination stages. Initiation involves the production of a free radical and its
reaction with a monomer molecule to produce a chain initiating species. Propagation
consists of the addition of a large number of monomer molecules to this species to
form a chain. The termination stage is representative of the slowing down of the
polymerization process due to physical limitations on the chain length. After the
propagation stage the nascent polymer structure may be linear, branched or cross-
linked. The increasing molecule size, and its subsequent entanglement with other
large molecules, restricts the diffusivity of the polymer and the termination stage can
be considered diffusion limited. A general account of the statistical mechanics of
polymer solutions is given in Doi & Edwards (1986), which establishes a theoretical
basis (from microscopic considerations) for the observation of diffusivity reduction
with increasing concentration in polymer solutions. Particular studies of the
diffusion rate in the polymerization of methyl methacrylate by Regen (1975, 1976)
show a rapid decrease in diffusivity with increasing polymer concentration. At 10 %
polymer concentration, the diffusivity, in appropriate units, is 0O(10%); at 80%
concentration this value drops to O(107). For both macroscopic theoretical
studies and practical purposes we can regard this diffusivity as vanishing at a finite
concentration. The behaviour of the diffusivity at values between these low and high
concentrations can be complex and depends on the particular polymerization under
consideration.

The aim of this paper is to study a reaction—diffusion equation with a general
diffusivity and reaction function. The diffusivity function has the property of
decreasing with increasing concentration and attaining zero at some critical
concentration. This zero is approached continuously rather than abruptly. The
reaction function is also chosen to be as general as reasonably possible. It is assumed
that the reaction rate varies with concentration only and has two zeros. These
represent the vanishing of any chemical reaction at zero concentration and at a finite
saturation level. In §2 we provide a natural foundation for the study of such
equations by considering integral conservation laws associated with the reaction—
diffusion process, with some uniqueness and boundedness results also being
established. Section 3 demonstrates the existence of a class of piecewise-classical
permanent form travelling wave solutions in systems of this type. The evolution of
the various types of initial data in the small time (¢) limit is considered in §4, while
the asymptotic structure of the solution for large distance (z) is considered in §5. A
non-uniformity in this asymptotic expansion, when ¢ is large, is revealed. This non-
uniformity, which is associated with the selection of a minimum speed travelling
wave, is resolved in §8. A detailed discussion of the behaviour of the solution and the
genesis of a moving boundary as the critical concentration is approached is given in
§6. A numerical method for solving the moving boundary problem is described in
some detail in §7. Numerical results which confirm the mathematical analysis are
also presented.

2. Conservation laws and differential equations

As a simple model for the polymer reaction process described in the introduction,
we consider a scalar reaction—diffusion process in one space dimension for the
variable u, which we may regard as a concentration of the autocatalytic chemical
species (polymer). Under reaction u reproduces itself at a rate R, R(u/u,) and diffuses
(in an unstirred environment) at a rate equal to the gradient of the flux function

Phil. Trans. R. Soc. Lond. A (1995)
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F, F (w/u,). Here R(-) and l?'( ) are dimensionless functions, with I;'GC"”[O 1],
R €(0*[0,00)], and R, F;, u,, u. are appropriately dimensional constants. We restrict
attention to the case when D( u) = {F, F (w/u,)}, has

Do )>0 (2.1)
and is monotone decreasing in 0 < u < u,, with
D(uy) =0 (2.2)
and ﬁ(u) =0, u>u, (2.3)
Moreover, we choose F, so that f)u(uc‘) = —F,u,?, which fixes
-y =—1. (2.4)
The reaction function R, R(u/u,) is taken to have two zeros in w > 0 at u = 0 (the

unreacted state) and w = w, (the fully reacted state) with R(u/u,) > 0 for 0 < u < u,.
The equilibrium states v = 0, u, are non-degenerate, so that R’(0) > 0 and R’(1) < 0.
In particular, we set R, so that R(0)=1. (2.5)

In dimensional form, the integral conservation law governing the one-dimensional
reaction and diffusion of w is

%f wdz = [Fy F(u/u, x]x§+f2ROR(u/ur)dx, (2.6)

y

for any x, > x, > 0, ¢ > 0. Here x > 0 is the spatial coordinate and ¢ > 0 is time. We
next introduce dimensionless quantities

w=wuw, x=F/R)a e, t= (u,/R)t. (2.7)

After substitution from (2.7) into (2.6) and dropping primes for convenience, we
arrive at the dimensionless conservation law

d [* Ty
—J udx = [F(u)]% +f R(u)de, (2.8)
dtJ,, v e,
where now FX)= dgf’(X/ﬁc), (2.9)
with 4, being the dimensionless parameter
T = Up /Uy (2.10)

It is convenient to introduce
Dwu)=F(u), u=0, (2.11)

after which we have the following conditions on D(u):

(i) D(u)is continuous in u = 0,

(i) D(0)=1a,"(0)>0, Dia)=0, D(ig)=~—1,

(iii) D(u) = 0 in w > 4, (2.12)

(iv) D(u)is C® and monotone in 0 < u < 4,;

D'(u) <0for0 < wu <,

via (2.1)—(2.9). In dimensionless form the conditions on R(u) become

(i) Ru)isC*®inwu =0,
(ii) R(0)=R(1)=0, R'(0)=1, (2.13)
(iii) R(u) <wu, wuel0,1].

Phil. Trans. R. Soc. Lond. A (1995)
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The condition (iii) limits the curvature of R(u) in [0,1] and arises through a
technical requirement that will be discussed at a later stage. In terms of polymer
reactions, we also make the restriction

0<d, <1, (2.14)

that is, the diffusivity of the polymer drops to zero before the reaction is completed.

In the remainder of the paper we examine the initial-boundary value problem
which arises when a localized quantity of « is introduced initially into the otherwise
unreacting state 4 = 0. Under these circumstances equation (2.8) must be solved in
x,t > 0 subject to the following initial and boundary conditions,

uOg(x)7 O<x< 0’:
u(x, 0) ={0’ 2> 0, (2.15)
u,(0,8) =0, ¢>0, (2.16)
u(x,t)>0 as x—>o0, t>0. (2.17)

The function g(x) is positive, monotone decreasing, and analytic in 0 < z < o, with
max, <, <,{9(*)} = 1 and

g(x) ~ gplx—0o)™ as x>0, (2.18)

for some non-zero constant g,, and m e N. The dimensionless parameter ¢ defines the
support of the initial data g(x), while u, is a measure of the maximum input
concentration in w, which, for the polymer problem has

0 < u, < . (2.19)

Following King & Needham (1992), we consider solutions w(x,t) to the initial-
boundary value problem (2.8), (2.15-2.17) on D, ={(z,t)eR*: 0 <x < 0,0 <t <
T}, which have u(z,t) continuous on D, while u,, u,,u,, exist and are continuous
throughout D except along piecewise differentiable curves x = s(t), say, upon which
u(s(t),t) = 4,. However, we require that the limits of u,, u,, u,, exist as points on such
curves are approached from either side. We denote this class of functions on D, as
Co[Dy], and refer to this as the class of piecewise-classical solutions to (2.8),

(2.15-2.17) on Dy. Clearly, all operations in (2.8) are well defined for uwe U [D,].
(@) Piecewise-classical solutions
Let u(x,t) be a piecewise-classical solution of (2.8), (2.15-2.17) on D, and define
D, ={(x,t)eDyp: u(x,t) > 4.},
D_={(x,t)eDyp: u(x,t) <.},
with C' denoting the common boundary of D, (note that D,,D_, C are disjoint, and

D.UD_UC=Dy). Tt is then clear that w(z,f) satisfies the partial differential

equations
u, = D) uyy+D' (w)u+R(u), (x,t)eD_, (2.20a)

u, = R(u), (x,t)eD,, (2.200)

while across C' (2.8) requires
Ulo+r = wlo- = 4, (2.21)

where u |+ denotes the limit of » on approaching C from D, respectively. With the
curve C described by x = s(¢), conditions (2.21) and equation (2.20a, b) lead to

[$u, + R(#,)] o+ = [Suy,—ui+R(d,)]~ =0, (2.22)
Phil. Trans. R. Soc. Lond. A (1995)
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which express the regularity conditions, on w(x,t) as C is approached from D,
respectively.

(b) Reformulation of the initial-boundary value problem

For simplicity we restrict attention to the case when g(x) is monotone decreasing
in 0 < z < 0. To examine the initial-boundary value problem (2.8), (2.15)—(2.17), we
first consider the modified initial-boundary value problem

W, = [De(w) wx]x+R(w)a (xa t)EDTa (2230’)
uyg(x), 0<z<o,
w(x,0) = wy(z) = {O, . (2.23b)
w,(0,8) =0, ¢t>0, (2.23¢)
w(x,0)>0 as x—>o0, >0, (2.23d)
where
Dw), 0<w<d,—e¢,
(@ ={ 3 (2.24)
X(w)’ w > uC_E,
with
xX(@) =D, +{a(w—"1t,+€)+blw—i,+ €+ c(w—id,+€)’} {1 + A(w—id,+e)*} !
(2.25)

and D,=D(@,—e¢), a=D'(G,—e), 2b=D"(d,—¢), 6c=D"(i,—e¢). (2.26)
Here, ¢, A > 0 are real parameters with 0 < ¢ < ¢, where ¢, < @, —u,. A solution to
(2.23) will be a solution in the classical sense.
We first observe that, with A taken sufficiently large, the modified diffusivity D (o)
satisfies the following conditions for each 0 < € < ¢,
D (w)e C3][R*],
D(w)>0 for =0, (2.27a—c)
D(w)—->D,(>0) as w—o0.
Also, with a suitable extension of the definitions of D (w) and R(w) into w < 0, we can

readily establish (following King & Needham 1992) that a solution of (2.23)
(henceforth referred to as I,[D]) has

w(x,t) =0 forall (aé, t)eD . (2.28)
Finally we note that
R’(w) is bounded above, w€[0, c0), (2.29a)
D (w) is bounded above and below (above zero), we [0, ), (2.295)
R(w)e C°[R]. (2.29¢)

We also require some notation. With V(z,t) being a suitably smooth function on
D, we define (following Oleinik & Kruzhkov 1961)

V(P)—V(F,
Vo= Supl7], V], =Vly+ Sup U= JIEN,
Dy P, Py OGP B) (2.30)
Wlia = Wt WVales Whata = Whisa +1Valira +1Vila

with 0 <a <1 and d(P,P,) = [(x;—x,)%+ (t,—1,)?]F where (x;,,), (2 t,) are the
coordinates of P, P, respectively. Corresponding to (2.30) we write V(x,t)eC [Dy]

Phil. Trans. R. Soc. Lond. A (1995)
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(¢ =0,a,14+a,2+a),if|V], is finite. We note that V(x,t) € C,, [Dy] implies that V, Vy,
V,, Vi x are well defined, bounded and continuous, together with satisfying a uniform
Hélder condition of degree o throughout D .

We can now state the following.

Theorem 2.31. When wy(x) € Cy, [ Dy, there exists a unique classical solution w (x,t)
to I[Dy), for any T'> 0 and 0 < € < €,. Moreover, w(x,t)e Uy, [Dy].

Proof. First note that wy(x)€Cy,,[Dyp] implies that wg, wy exist, are bounded and
continuous, and satisfy a uniform Hélder condition of degree, v, on R*. The proof
then follows from Oleinik & Kruzhkov (1961, theorem 14, p. 132). We are required
to check that D (w)e C*™[R"], D (w) is bounded above and below (above zero) on R",
and that R’(w) is bounded above on R* (note that we need only consider weR*
because of (2.28)). All of these conditions are satisfied via (2.27)-(2.29). [ |

In addition, we have that
0oy, M, on Dg, (2.32)

where M depends only on wy(x), which follows from Oleinik & Kruzhkov (1961,
theorem 12, p. 130).

Now, since u, < @, —¢ for 0 < ¢ < ¢,, then w, < @i,—¢ for all x > 0, and so there
exists a unique, maximal ¢, > 0, such that

o, t) <d,—e on D,/{(xt): x>0} (2.33)
where we set {, = o0 if w(x,t) < @, —e¢ for all £ > 0, x > 0. We also recall that
D (X),R(X)eC”[0,i,—¢] (2.34)

€

for any 0 < € < ¢,, which enables us to establish the following lemma.

Lemma 2.35. With w(x,t) being the solution of I[D,] for any 0 <e <e,, then
w,(x,t)€ C*[D, ] (under the conditions of theorem (2.31)).

Proof. We denote by H,, [D,], peN, 0 <a <1, the set of functions V:D, ~R
which are p times continuously differentiable in x, Wlth each derivative satlsfylng a
Holder condition of degree a.. We first show that w,(x,¢) € Hy,, [ D, | for any pe N and
with v as defined in theorem (2.31).

(i) From theorem (2.31) we know that

wx,t)eH,,,[D, ], (2.36)
as Cy,,[D, ] = Hy,,[D, ]. Now suppose that, as an induction hypothesis,

w,(x,t)€ Hyp i [Dy ], (2.37)
for some me N. Then since 0 < w, < @, —¢ (via (2.33)) on D, we have via (2.34) and
(2.37) (1), R(@,(@,0)€Hypp D, ). (2.38)
An application of Oleinik & Kruzhkov (1961, theorem 9, p. 121) with (2.38) then
establishes that 0,(@, 6)) € Hypmany sl Dze]-

Therefore, with (2.36), we have via induction that
we(x’t)EHznﬂ[Dze]a (2.39)
for any neN, as required.

Phil. Trans. R. Soc. Lond. A (1995)
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(i) As w,(x,?) is a solution to I,[D, ], then for w, we have the operator relation

0 _ 02 , o )
S =D )a5+D( )[55] +R(). (2.40)

On Dy, w,(x,t) satisfies (2.33), (2.39), with D (+) and R(-) satisfying (2.34). Therefore,
from (2 40), all ¢t and mixed x,t derivatives of w (x, ) exist and are continuous in D,
which with (2.39) establishes that

w(x,t)eC*D, ],
as required. [ ]
We now have the following theorem.

Theorem 2.41. With w(x,t) being the solution of I[D,] (for any 0<e <e,),
then o, (x,t) <O throughout D,. In addition, with w,(x)eC*0,0] and such that
[D(w(,)w0 1.+ R(w,) = 0, then v, (x t) = 0 throughout D, .

Proof. Recall first that w,(x) is monotone deereasmg for x > 0. Now via lemma
(2.35) v, € C*[D,] and hence from equation (2.23a) we have

¢ = [D(0,) plox + R (0,) b, (x,t)€D,, (2.42)
with ¢( ,0) = ¢ (@) (= wy(x)) <0, 220, (2.43)
$(0,6)=0, 0<t<t, (2.44)
Pz, t)—>0 as x—>o00, 0<t<t, (2.45)
where P, t) = o, (x,t), (x,t)eD,, (2.46)
and we recall that ¢(x,?), w(x,t)eC*[D, ], with 0 < w, < i,—e and D (X), R(X)e
C*[0,4,—e€].
We can re-write equation (2.42) as
a(x,8) hopt+ b, t) pp+ Mz, t) p— P, =0, (x,8)€D,, (2.47)
where
a(x, t) =D (0,), b(x,t)=2D/(w,),,
h(z,t) = R (0,) + D (0,) } (2.48)

We note that a(x,¢), b(x,t) and h(x,t) are bounded C° functions in D, (via above
and theorem (2.31)) and a(x, t) is bounded above zero (a(x,t) = D (4, —e) > 0)in D,.
We next introduce yr = ¢ e™(1e R), and rewrite (2.47) in terms of ¢ as,
(@, ) Yoy +b(@, ) Yp+ (M@, ) =) =9, = 0, (x,t)eD,, (2.49)
with conditions (2.43)—(2.45) becoming

Y(0,5) =0, 0<t<t
Y(x,t)~>0 as xz—o00, 0<t<t, (2.50)
P(@,0) = ¢y(x) <0, 220.
With A(x,t) bounded on D, , we can choose A sufficiently large so that (k(x,?)—A) <0
on D, . We now suppose that there exists a point (%, ¢,) €D, such that yr(x,,t,) > 0.

Condltlons (2.50) then imply that yr(x, ) achieves its max1mum M>0onD, untkm
D, . That is, there exists a point (z,, )eDte, such that yr(x,,t,) = M. An apphcatlon of

Phil. Trans. R. Soc. Lond. A (1995)
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the maximum principle of Protter & Weinberger (1967, ch. 3, §2, theorem 4) then
establishes that y(x,t) = M > 0 for all (x,¢) < D, . In particular this leads to ¢,(x
M > 0, which contradicts (2.50). We conclude that ¥(x,t) < 0 throughout D, and
hence that $(x,t) < 0 throughout D, , as required.

The proof of the second part follows similarly, on noting that the condition
[D(wy) wg]' + R(w,) = 0 ensures that o, (x,t) >0 ast—0" for all x> 0. ]

We can further establish the following.
Lemma 2.52. For each 0 < € < €, t, is finite, under the conditions of theorem (2.41).

Proof. For a given 0 < € < ¢,, suppose that ¢, is unbounded. Then by definition of
¢, we have
0<or,t)<d,—e on Dy, (2.53)

for any 7> 0. Thus (via theorem (2.41)), for each x>0, w/(x,t) is monotone
increasing in ¢ and bounded above, and so

o (r,t)>u (r) as t—o00, =0, (2.54a)
with O0<u () <d,—e, x=0, (2.54b)
and wu () satisfying

D(uy)uy) +R(u,) =0, x>0. (2.54¢)

However, it is readily established that (2.54b, ¢) has no solution and we conclude that
¢, must be finite, as required. ]

By construction of D,(+) it is also clear that for 0 <e¢, < ¢, <e¢,

b, >t (2.55)
and via theorem (2.31) that
0, (@) = o, (1) (2.56)
on D, . We can now state the following.
Theorem 2.57. For each 0 <e <e, the initial-boundary value problem (2.8),
(2.15-2.17) has a unique solution on D, in C[D,]. This solution is given by u =
w,(x,t).

Proof. By construction w,(x, ) is a solution to (2.8), (2.15)—(2.17) in C [ D, JonD,.We
now consider uniqueness. Let u(x, )€ C [D, ] be a solution to (2.8), (2. 15) (2 17) onD

(i) Suppose that u(x,t) < @,—¢e on D Then u(x, t) satisfies I,[D, ]. However, the
solution to I,[D, ] is unlque (theorem (2 31)) and so w(x,t) = o (, £) on D,.

(if) Suppose that w(x, ¢) € d@,—e on D,. Then, as ¢, <@, —u,, It*(< t:), x*(>0)
such that

u(x*, t*) = d,—e, (2.58)

while u(x, t) < d,—e,
on D,,. Thus, following (i), we conclude that u(x,t) = w,(z,¢) on D,., which gives, via
(2.58), w,(x*, t*) = i1, —¢, contradicting the definition of {,. Thus u(z,t) < @, —eon D,
and uniqueness again follows via (i). |

Finally we show that ¢, remains bounded as e~ 0. Now, via (2.55), ¢, is increasing
as €0 and we suppose that ¢, > 00 as ¢ >0. We next consider w,(z,¢,). Via theorem
(2.41) and (2.56), we deduce that w («,¢,) is monotone increasing as ¢,— oo for fixed
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x =20, with 0 <wo/x,t,) <4, by definition of . Therefore, as ¢—>0, wU(x,¢) is
monotone increasing and bounded above, for each x>0, and so

w,(x,t,)>w,.(r) as e—0,
where, by construction,

(D(w,) ) +R(w,,) =0, 220,
0 < w,(x) < 4.
However, it is readily established that this problem has no solution, and we conclude

that ¢, is bounded as ¢—0, which (since ¢, is increasing as ¢ —0) ensures that ¢, =
lim, ¢, exists and we dehne

¢—>0"€¢
w(x,t) = o/r,t); =20, 0<E<E <t (2.59)
We then have the following theorem.

Theorem 2.60. With the condition of theorem (2.41) satisfied, the initial-boundary
value problem (2.8), (2.15)—(2.17) has a unique solution on x = 0,0 < t < t, given by u =
w(x,t). Moreover,
) 0 < o, t) <,
i

(i

(il) w.(x,t)eC™,

(iii) w, (x,t) <0,

(iv) hmt o1, We(0,8) = i,

(v (xt)>0 on xz>0,0<t<{,.

Proof. This follows from theorem (2.41), (2.54), theorem (2.57) and construction of
we(2,1). n

The results of this subsection direct us to look for a solution to the initial-boundary
value problem (2.8), (2.15)—(2.17) in three distinct domains.

Domain I, 0 < x < 00, 0 <t <,

w, = D(u) Uy, + D' (w)u2+R(u), 0<u<d, (2.60a)
u()g(x)a O < < o,
0) = 2.600
weo={ " T (2.600)
u,(0,6) =0, ¢>0, (2.60¢)
u(x,t)>0 as x—o0, t=0. (2.60d)
Domain I, 0 < x < s(t), t > ¢,
u, = R(w), u >4, (2.61a)
u(x,t)>d, as x—s (¢). (2.610)
Domain 111, s(t) <x < 00, t > t,
Uy, = D(u) Uy, + D' (w) w2 +R(u), 0<u<d, (2.62a)
{ﬁ”’ T 2.62b
N .
u(x,t) - 0, x> o0. ( )
We also require,
s(t,) =0, limu(x,t) = limu(x, ¢). (2.63)
t>td t>ty
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Here the interface C' is given by a = s(¢) with D, being domain II and D_ being
domain III. The problem in domain I has a unique solution, » = w («, ), via theorem
(2.60). Also, since u(x,t) > u, in domain II, condition (2.22) requires that

§)>0, t>t, (2.64)

as u, must remain bounded as x — s(t)” (u€ C [D]). To obtain an upper bound on s(¢)
we consider the problem in domain ITI. We define the quantity

A(t) = J w(a,t)dt, t>=1,,
s(t)
and apply the operation [ :Om ...dz to expression (2.62a), which leads to
A, = —Sdc+f R(u)dx, t=t,. (2.65)
s(t)
After use of condition (2.13) (iii), we obtain
A,—A <=5, t=t,. (2.66)

An integration of the differential inequality (2.66) gives
At) At e te—a, {s(t>+etf s(r) e dT}
tC

in t >, after use of (2.63). However, A(t), s(t) > 0 in ¢t > t,, which leads to
s(t) S ajtA(L,) et te, =4, (2.67)

Thus s(¢) is monotone increasing in ¢t > ¢, and remains bounded for all finite ¢.

We next consider the development of u(x, t) in domain IT. It is convenient to define
the inverse function of s(¢), which we denote by s(x), x = 0 (so that t = 5(s(t))Vt > ¢,
with 3(-) being well defined via (2.64) and (2.67)). We have

§(x) =1/$(5(x)) >0, Va>0, . (2.68)
5(0) = ¢,. (2.69)
The solution to (2.61a, b) can now be written implicitly as
Hwu)=t—3x), =0, t>3x), (2.70)
=Y dA
where H(y) = —. 2.71
(¥) L=aCR(/\) (2.71)

From (2.70), (2.71) we readily observe that @, < u < 1 at each « > 0 for all ¢ > §(x),
with,
u(,t) ~ 1—(1—1,) eFDt=s@)-cl (2.72)

1 1 1
¢= f {R<A>+R’<1><1 —A>}dA'

Moreover, we have w, > 0 for all ¢ > 5(x), while u, = = (x) R(u) < 0 for all 0 <
x < s(t), ¢ > t,, via (2.68) and (2.70). Thus for each x > 0, with ¢ > s(x), we have that
u(x,t) > 1~ as t > 00, monotonically in ¢, and the fully reacted state is reacted in large

as t— o0, where

Phil. Trans. R. Soc. Lond. A (1995)
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Evolution of travelling waves. 1 345

time, with x fixed. However, when « = s(t), u = 4, for all ¢, while u — 0 for z > s(¢) for
all ¢. This indicates the formation of a travelling wave structure as t— co.

Before studying the problems in domains (I)—(ITI) further, we first examine the
possible class of piecewise-classical permanent form travelling wave solutions of the
integral conservation law (2.8), which could develop from the initial-boundary value
problem in the long time.

3. Permanent form travelling waves

We expect that the long time development of the initial-boundary value problem
(rBVP) may involve the propagation of a travelling wave of permanent form in
x > 0, separating the unreacted state v = 0 ahead from the fully reacted state u = 1
to the rear. Therefore, before developing 1BVP further, we examine the possible class
of piecewise-classical permanent form travelling waves that can be sustained by the
integral conservation law (2.8).

We make the following definition:

Definition 3.1. A permanent form travelling wave solution (PTw) of the integral
conservation law (2.8) is a non-negative solution that depends on the single variable
z = x—y(t) (where y(¢) is the position of the wave-front), and satisfies the conditions
u—>0 as z— 00 and u—1 as z—-—00. In addition the solution should be continuous
and piecewise-classical for —o0 <z < 00.

It is readily deduced that a pTw has 0 < u(z) < 1 and is monotone decreasing in z.
Thus, u(z) is a solution of the boundary value problem

D(u)u,, +D"(w) u2+vu,+R(u) =0, z>0, (3.2)
vu, +R(u) =0, 2 <0,
with conditions

Osu<id, 2>0; d,<u<l, z2<0, (3.40)
u—>0 as z—>o00, (3.4b)
u—>1 as z—>—00, (3.5)
w(0) = w(07) = 4. (3.6)

In the above v = y(t). However, since u is a function of z alone, equations (3.2), (3.3)

determine that the wave-front propagation speed v must be constant. Moreover, the
symmetry of (3.2)—(3.6) implies that we need only consider v > 0. The problem
(3.2)—(3.6) can be thought of as a nonlinear eigenvalue problem, with the positive
propagation speed v being the eigenvalue. We study (3.2)—(3.6) in the phase plane.

(@) The phase plane

We consider equation (3.2) for z > 0 in the (u,w) phase plane, where w = u,. In
terms of u, w equation (3.2) can be written as the equivalent system

u,=w, w,={—D"(u)w*—vw—R(u)}/D(u (3.7)

The trajectories of system (3.7) in the (u,w) phase plane satlsfy the first order
ordinary differential equation

dw _ D'(u)w®—vw—R(u)
du wD(u) ’

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. Local behaviour in the (%, @) phase plane, with vy = 1/D,.

from which it is clear that the singular system (3.7) has the same phase portrait as
the regular system

w, = wD(w), w,=—D"(u)w*—viw—R(%). (3.9a, b)

We are thus able to characterize the phase portrait of the singular system (3.7) via
that of the regular system (3.9). The phase portrait of (3.9a,b) need only be
investigated in the domain @ < 0, 0 < @ < 4,, which we denote by @. The system
(3.9) has two equilibrium points in @ at e, = (0,0) and e, = (#,, 2), where

Q = Yo— (0 +4R,)3, (3.10)

with R, = R(@,). We also observe that the line # = 4@, is an integral path of the system
in €. Thus a solution to equation (3.2) in z > 0 that satisfies conditions (3.4) and (3.6)
requires a directed integral path of the system (3.9«, b) connecting the equilibrium
point e; to the equilibrium point e, and lying entirely in @.

We begin by examining the equilibrium point e,. Linearization of equations (3.9)
at e, shows that it is a simple saddle point for all v > 0, with eigenvalues given by

A =H—o b (P H4R), A, = — (P +4R, )

The stable manifold at e, coincides with the line @ = @,, while the unstable
manifold cuts the line # = #,. Thus, there is just one possible integral path that will
satisfy condition (3.6) and remain in @, this being the part of the unstable manifold
at e, that points into ¢. We label this as S, and the local behaviour in the
neighbourhood of e, is shown in figure 1.

Linearization of equation (3.9) about the equilibrium point e; shows that it is a
stable spiral for 0 < v < 24/D,, while it is a stable node for v > 24/D,, with

D, = D(0) = @i, F"(0). (3.11)
The eigenvalues are given by
= —v+(? _4‘-D0)%}? e =H—v— (0" —4D0)%}
Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. The integral path S in the (#, @) phase plane, with v, > 4/D,.

with the two straight line paths having slopes
¢, = (2Dg)  [—vE (12 —4Dy)], (3.12)

when v > 24/D,. Note that both ¢, < 0. Therefore, a necessary condition for a

solution to (3.2), (3.4a), (3.4b) and (3.6) is that
v = 24/D,. (3.13)

The condition (3.13) will also be sufficient if we can show that the integral path S,
which leaves e, as the unstable manifold in ), remains in @ and connects to the node
at e;. The local behaviour in the neighbourhood of e, (for v > 24/D,) is illustrated in
figure 1.

To proceed we require the following lemma.

Lemma 3.14. For each v = 24/ D, the region
I={uweR0<u<id, —a@wu<w<O0}
18 a positively invariant region for the system (3.9), with
a(v) = (2Dy) v+ (12 —4D, ).
Proof. We define the vector field H(u, w) as
H(w,w) = (wD(w), —D'(w) w*—vio—R(w))". (3.15)

An inspection of H readily shows that any integral path starting within I cannot
subsequently leave I via the edges that have @ = @, or @ = 0. It remains to consider
the third edge of I, w = —a(v) %, 0 < % < #,, which we denote by {. We must show
that the vector field H is directed strictly into I on ¢. This requires that

F(a,v) = H|; (a,1)* > 0Y0 < @ < 4, (3.16)
where, with use of (3.15),
F(w,v) = —a*uD(u)—D'(7) a*u® +vau— R(w), 0<u < d,. (3.17)

Now via (2.12) (iv)
F(w,v) > —a*aD(w)+vau—R(w), 0<u<,.
Phil. Trans. R. Soc. Lond. A (1995)
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Furthermore, using (2.12) (iv) and (2.13) (iii) we have
F(a,v) > a(—Dya*+va—1)=0, 0<u<d,
on using the expression for a(v), and the result is established. |

We now show that the equilibrium point e,el for all v = 24/D,. For e,el we
require

La(0)+ Q2 >0, v=24/D,. (3.18)
First we consider the case with v = 24/D,, when
i, o(v) +Q = Dy¥(d,+Dy) — v/ Do(R, + D)3} (3.19)
However, via (2. 13) (iii), R, < d,; so (3.19) leads to
co(v)+02 > “(dC+D0)f{(1ZC+DO)§— vV Dy >0 (3.20)

and e,el forv = 2\/ DO. We now consider the case when v > 24/D,, and observe that
a(v) is a monotone increasing function of v > 24/D,. Furthermore, it is readily
checked that Q is a monotone increasing function of v > 24/D;. Hence #, o(v) + £ is
a monotone increasing function of v > 24/D,, and, since (3. 18) holds for v = 24/D,,
then it must hold for v > 24/D,,. Therefore,

e,clVv>=24/D, (3.21)

as required. The integral path S therefore enters I as it leaves e,. However, it cannot
leave I, and must connect with the equilibrium point e; at the origin (via the
Poincaré—Bendixson theorem). Moreover, I < @ and so S remains within . A sketch
of the integral path S with » > 24/D, is shown in figure 2. We have established the
following proposition.

Proposition 3.22. The equation (3.2), subject to conditions (3.4a, b) and (3.6) has a
unique solution w,(2) for each v = 24/D. ]

We note that, for each v > 24/D,, the integral path S lies in w < 0 in the (u,w)
phase plane, and so u,(z) is monotone decreasing in z > 0. In particular,

{A exp (¢, z), v > 24/D,, 5 93
- U Brexp (—2/v/Dy), v =2vD, (8.23)
as z— 00, while

u(z) ~ U, +Q2(v)z as z—>0% (3.24)

Here A, B are positive constants.

To continue u,(z) into a PTW, we must now consider equation (3.3) in z < 0 subject
to the conditions (3.4a), (3.5), (3.6). This problem has a unique solution for each
v = 24/D,, given by u = u_(z), which is given implicitly by

i d¢)
= 0. 3.25
: vju_(z) (¢ = ( )

An examination of (3.25) shows that u_(z) is
u_(z) ~1—cexp(—R'(1)z/v) as z—>—00 (3.26)

s monotone decreasing in z < 0, with

and ¢ > 0 constant, while

u_(z) ~d,—(R,/v)z as z—>0". (3.27)
Therefore we have established the following theorem.
Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

a
///\ \\
L A

'\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Evolution of travelling waves. I 349
0.8
u
0.4
0 T T T T T =
-2 0 2 4

Z
Figure 3. The minimum speed PTw when D(u) = $(} —u) (: +u) and R(u) = w(1 —u) with @, = 0.5.
Theorem 3.28. For each v > 2+/D, there exists a unique, piecewise-classical,
permanent form travelling wave solution to the integral conservation law (2.8), say up(2).
Moreover, up(z) is classical in z > 0 and z < 0 with

_uy(2), 2>0,
ur(z) = {u_(z), 2 <0.

For 0 < v < 2+4/Dy, no such solution exists. n

Finally, we consider the jump in derivative of u;(z) at z = 0. From (3.27) and (3.24)
we find that 1
[uTz(0+) - uTZ(O_)] = %{?J - (vz +4—Rc)§} +Rc/v > 07 (329)
for all v > 24/D,.
For the case where D(u) =3(3—u)(3+u), 4, =1 D,=1% and R(u) = u(1—u) the
minimum speed PTw has been computed numerically and is shown in figure 3.

4. Small time development, {0

The existence of a solution to the initial-boundary value problem in domain I,
(2.60a—d), has been established in §2, where it was further established that the
solution is C® on D, . Here we examine the structure of this solution as t— 0. There
are two cases to con81der depending upon the behaviour (2.18) of g(x) as x—>o0".

(@) Case (i), m =0
In this case g(x) >g, > 0 as x > o~. Since g(x) has compact support, we anticipate
that the structure of the solution to (2.60a—d) as ¢{—0 has primarily three
asymptotically defined regions in x. We thus proceed to construct the asymptotic
solution via the method of matched asymptotic expansions. The three regions are
labelled as follows:

region A 0 <z < o—0((1)), = 0(1),
region B x = o+ 0(4()), =0(1),} as t—0, 4.1)
region C  x = o+ 0(4()), u = o(1),

where d(t) = o(1) as t—0. This structure follows immediately from the initial

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 4. A graph of %,(y) versus # in the case where D(u) = (%, —u) and @, = 0.5.

condition (2.15) when m = 0. The function §(¢) is to be chosen to retain, at leading
order in region B, the term (D(u)u,), in equation (2.60a). It readily follows that
8(t) = O(%) as t >0, and without loss of generality we put 8(t) = .

We begin in region A. Since u(x,0) > 0 and analytic in A, with v = O(1) as t -0,
we expand wu(z,t) as a regular power series in ¢. After substitution into equation
(2.60a) and applying initial condition (2.60b) we obtain

w(®, 8) = uo () + D, () 1o 9" () +D" (e 9 () ug(g'())* + R(u, g(%))]
+0(?) as t—->0, (4.2)
with 0 < z < 00— O(#2). Now, with (0 —x) < 1, (4.2) becomes

u(, t) ~ wy o+ HD(uogo) e §" () + D' (g go) wg(9'(0))* + R(uggo)t +--- as 0.
This suggests that in region B we have

u(n,t) ~ X t'a.(y) as t—0. (4.3)
=0
With 9 = O(1), where = (x—o)/#:. On substituting from (4.3) into (2.60a) (when
written in terms of # and ¢) we obtain, at leading order,
D(w,) Wy +D/(770)(77077)2+'12'77ﬁ077 =0, —wo<y<x©, (4.4)

to be solved subject to matching with regions A and C as 5 — = o0 respectively. Via

(4.1) and (4.2) these matching conditions are
[ —>U as ——00
~0(77) 090 U } (4.5)
@o(n)—0 as §—>+0

The solution to the boundary value problem (4.4), (4.5) has not been found for general
D(-). However, it has been solved numerically in the case D(u) = (@,—wu), 4, = 0.5,
uygo = 0.3 and a graph of the solution is shown in figure 4.

However, the form of @, (%) as # >+ c0 can be obtained directly from (4.4), (4.5) as

oo eXp[—?/4Dg] as 7y 00

() ~ { (4.6)
UgGot+ oyt eXp[—9?/4D(ugg,)] as y—>—o00

for some constants ¢, > 0 and ¢__, < 0.

Phil. Trans. R. Soc. Lond. A (1995)
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Finally we move to region C, in which (4.4) and (4.6) suggest that we write

u(x, t) = exp[—(x, )7, 4.7)
with yr(z,t) = O(1) as t -0 in C, and ¥(z,t) > 0. We expand
Y@, t) = ro(@) + 1o () log t + i (%) ] +o(t) (4.80)

as t— 0 in C as suggested by (4.3) and (4.6). After substitution from (4.7), (4.8a) into
(2.60a) and solving at each order in turn, together with matching to expansion (4.3)
as o', we obtain

Y(x,t) = (x—0)? /4D, —t[3logt +1ogc,, —log (x— )]+ o(t) (4.8b)
as t—0 in region C. This gives, via (4.7),

u(x,t) = (;"it;) exp[—(x—0o)2/4Dyt]{1 +0(1)} as t—>0, (4.9)
with x = 0+ O(1). We note that expansion (4.8) remains uniform as ¢t >0 for z > 1,

and no further regions are required to complete the asymptotic structure of u(x,?) as
t—0.

(b) Case (ii), m > 1
As in case (i) we again require three asymptotic regions A, B, C, with 8(f) = £ as
t—0. The difference in this case is that now u = o(1) as t >0 in region B, and the
leading order problem in this region is then solved exactly. In region A the
development of u is as in (@), given by (4.2). In region B we have that

u(y, t) = "4 (n)+o(t™?) as t—>0 (4.10)
with # = O(1), where
Uy, 3l —gmily =0, —o0 <A< oo,
>0 as A—>+o0, (4.11)

Uy ~ Uy G (—A)" as A—>—00,

with A = Dﬁn and §,, = (—1)™g,, D", The solution to (4.11) is readily obtained as

m=1(1,,1\| 4 0 —s?/4
2 g 4 J ° T as,

W) = /4 o
m!uoém tel
e d
Km[%(m_n]!“"mwﬁ A e
where
m (l )[)(21
}J——‘_—, m even,
oy @ G
m) =1 10y (3lm—1]1A*™ m odd
S0 Qi+ DIBm—) =]’ |
- e—82/4 1
) 1)y dd.
and Km J‘—oo(Am(S) 82) v
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We note from (4.12) that 4,(y) is positive and monotone decreasing for all —oo <
7 < 0. From (4.10) and (4.12) we also have, for y > 1,

dg(1) ~ E exp [—=n*/4Do) /9™, (4.13)
. 2™m)uy g, /T, meven
with i, = D((,f’"“){
2(m!)* wo G/ Gm)! [3(m — DK, m odd.

The expansion in region C follows (4.7) and (4.8), with now
Y(x,t) = (x—0)2/4Dy) —t[(m+3) logt+logé, —(m+1)log (x—o)]+o(t) (4.14)
as t -0 with x = o+ O(1). This leads to, via (4.7),

A gmtl
u(x,t) = %‘)mﬂexp[—(x—a')ywot]{l +o(1)} as t—0 (4.15)
with « = 04+ 0O(1). The expansion (4.14) remains uniform for x > 1 as t— 0, and the
asymptotic structure of u(z,t) as t -0 is complete.

In both cases (i) and (ii) there are two points to note in the small ¢ development
of u(x,t). First, the support of u(x,t) extends to x = o0 immediately and, secondly,
reaction is only significant within the original support domain, region A, with
diffusion dominating in regions B and C. We next consider the asymptotic behaviour
of u(x,t) as x— oo with ¢ = O(1).

5. Asymptotic solution as x - o

We examine the structure of the solution u(x,t) in domains I and I1 as - oo with
t = O(1). The boundary conditions (2.60d) and (2.62b) imply that v = o(1) as x - o0,
t = O(1). Moreover, the structure of u(x,¢) in region I as {—0 with « > 1, as given in
(4.7), (4.8b), (4.14), indicates that we write

u(x, t) = exp{—0(x,t)} as x> o0, (5.1)
with ¢ = O(1), and
O(x, t) = 0,(t) (x— )2+ 0,(t) (x — ) + 0,(¢) log (€ — o) + O4(t) + o(1), (5.2)

asx— o0 with ¢ = O(1). After substitution into equations (2.60), (2.61a) and solving at
each order in turn, we obtain
0,(t) = (4D t)™Y, 0,(0) =0, 0,(t) = (m+1), 0O,(t) =—(m+3)logt—t—logd.,,.
(5.3)

Here d, = c,, or ¢, for m =0 or m > 1 respectively, and arbitrary constants have
been chosen to satisfy boundary conditions (2.60d), (2.62b) and to match with
expansion (4.7), (4.8) (m = 0) or expansion (4.7), (4.14) (m > 1) in the overlapping
domain x > 1, t < 1. Therefore we have

O(x,t) = (x—0)2 /4Dyt + (m+1)log (e — o) —{(m+3)logt +t+logd }+o(1) (5.4)
as ¢ — o0 with ¢ = O(1). After substitution into (5.1) we arrive at

w tm+%
(.’XJ— 0.)m+1

Phil. Trans. R. Soc. Lond. A (1995)
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as x— o0 with £ = O(1). An important point to note is that wu(x,t) is exponentially
small as ¥ — 00, and the expansion (5.5) remains uniformly valid for ¢ large provided
x> O(t). However, expression (5.5) fails for ¢ > 1 when z = O(f) and w(x,t) is then
only algebraically small in . We discuss this long-time non-uniformity in (5.5) in §8,
where it is shown to play a significant role in determining the propagation speed of
a travelling wave that develops in the initial-boundary value problem when ¢ > 1.
However, before examining the long-time structure of u(x,t), we first consider the
asymptotic structure of u(x,t) when t ~ ¢, and u ~ ..

6. Development at breakthrough ¢ — ¢}

Here we examine the structure of w(x,t) as t—¢' and z—0%; that is, as
breakthrough occurs into w > #,. Thus we must examine the structure of u(x,¢) in
domains IT and III. At ¢ =¢,, u(z,t,) is monotone decreasing in x, with a local
maximum at z = 0, where v = @, (via theorem (2.60)). Therefore, as x — 0%, we have

w(x, b)) ~ d,—a, 2>+ X a,z", (6.1)
n=3

with a, = 0. We expect the generic condition to be a, # 0, and we begin with this
case. We say that breakthrough occurs at ¢t = ¢, if u(0,t) > 4, for 0 < t—¢, < 1. Now,
in ¢t <t, equation (2.60a) gives, as x — 0%,

u,(0,8) = D(u(0,t)) u,,(0,8) + R(u(0,8)), (6.2)

which gives, on using (6.1) and allowing ¢—¢; in (6.2),

u,(0,¢,) = R(#@,) > 0. (6.3)
Therefore breakthrough always occurs at ¢t =t,. Furthermore (6.3) and (6.1) (with
a, # 0) suggest that s(t) = O[(t—t,)? 2 as {7 and we expand

s ~ 3 s,lt—t)"", (6.4)
with "

o+ § F,(§)(t—t,)"* in domain III
n—

u(, t) ~ " (6.5)
i, + X G,(7) (t—t,)"* in domain IT
n=2

at t—>t'. Here 7 =x/(t—t,)} = O(1) as t—t", with « = s(t) corresponding to 7 =
s;+o(1) as t—>t}. After substitution from (6.5) into (2.61a), (2.62a) and solving at
each order in turn, we obtain

(i, + (8 —to) {R(f1,) — a2ﬁ2}+a3<t—t>%ﬁ3
+ (E—t,)2 [AR (1) (R (1) + 205} — ag{R' (W) + 6y} 72
L] +ait1+o <[—tc]> in ITI
B ERATT <ﬁ>+Aﬁz]+B<t—tc>%ﬁ3 o0
+(E— )2 [RR(7,) R (@) + AR’ (i1,) 72 + O]
+0([t—t]g) 1nII

Phil. Trans. R. Soc. Lond. A (1995)
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where the initial condition (6.1) has been satisfied by the expansion in domain IIT as
7— o0. Here A,B,C are as yet undetermined constants. It remains to apply the
interface condition that u— @, as z— s(¢)*. This determines (via (6.6) and (6.4)) the
remaining unknowns as

5= (Re/ay) %’ sy = R ay/2a;,

s 5a§R2 a4R%_R%Rg_5a§R%C

5 Sa2 2a%2 4a%2 2
Ad=—a, B=a, C=a,—5d3R,,

: (6.7)

where R, = R(4,), R, = R'(%,). We can now determine the jump in gradient across
x = s(¢). On using (2.22) we find that

() = ugls()*,0) —ugls(t), t) = 7 u2(s(0)*, 1)), (6.8)

which, after substitution from (6.4), (6.6), (6.7), leads to
J(t) ~ Sai Ri(t—t, )} as t—>1. (6.9)
We next examine the general case in whicha, = ... = a,, ; =0, a,, # 0, pe N and

s, < 0, in (6.1). Again (6.2) and (6.3) establish that breakthrough occurs at ¢ = ¢,.
However, (6.3) and (6.1) now suggest that s(¢) = O[(t—¢.)"/**] as t >}, and we expand

S(t) ~ sy (t—t)YP 4. (6.10)
+ 3 F (7)) (t—t.)"* in domain ITI
with u(ii, t) ~ ";2 (6.11)
i+ 3 G, (7)) (t—t,)"? in domain IT
n=2

at t—t. Here § = /(t—t,)"/* = O(1) as t > t}. After substitution from (6.10), (6.11)
into (2.61a), (2.62a), we obtain the leading order development as

’ {dc +(t—t,) [R.+ay,7*®] in domain ITI
w(f, t) ~

iy 6.1
@+ (E—t,) [R,+A47%*]  in domain IT (6.12)

and 4 is an as yet undetermined constant. It remains to apply the interface condition
(w1, as x—>s(t)*) which fixes the remaining unknowns as

A =ay, s =(—R/a,)™. (6.13)
Finally we determine from (6.8), (6.10), (6.12) and (6.13) that the gradient jump is
given by
J(t) ~ 8pPag,(— R,/ ay,) P3P (t—t,)PEP—D/2P (6.14)
as t—tt.
In both cases we see that breakthrough occurs at ¢ = t,, and the front initiates its
motion with a singular velocity, given by §(t) = O([t—t,]/**7!) as t >t}

7. Numerical solutions

In this section we consider numerical solutions of the initial-boundary value
problem (2.60)—(2.63). For initial data whose maximum value is below the critical
level (@,) the numerical problem is classical, at least until the effects of reaction

Phil. Trans. R. Soc. Lond. A (1995)
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increase u up to the critical level. To avoid unnecessary computation we only
consider initial data whose maximum is at the critical level, this maximum occurring
at the origin. The functional form of initial data is chosen so that a moving boundary
is immediately formed. As noted earlier the moving boundary problem splits into a
purely reactive equation for x < s(t) and a reaction—diffusion equation for x > s(¢). If
the solution of the reaction-diffusion problem can be found, in isolation from the
reaction problem, it is then possible to return to the reaction problem with
knowledge of s(t) and compute this separately and very easily.

The reaction—diffusion problem, to be solved on the domain s(f) < x < o0, is
written in the form

u, = D(u) u,, +D'(u) u2 + R(u),

u(x,0) = g(x), u(s(?t),t) =, (7.1)
$(0)=0, u—=0 as x—o00.

A further boundary condition, which is useful in the numerical solution of this
problem, can be found by considering the form of wu(x,t) close to the moving
boundary. If we pose an expansion

(e, t) = u,+a(t) (x—s(t)) +0((x—s(t))?) (7.2)
then a simple calculation reveals
a(t) = —5{—3(t) +/([s(t) "+ 4R(a,))}. (7.3)

This asymptotic development can be used exactly at the moving boundary x = s(¢)
to give the condition

Uy (s, (1),8) = —3{ = 8() + v/ ([5()]* + 4R (@)} (7.4)

For numerical purposes it is desirable to compute the evolving solution over a fixed
domain. This is effected by the introduction of a new independent variable § =
x—s(t) and leads to the modified system, to be solved over the domain 0 < § < o0,

wy = D(u) uge+ D (w) ug + Sug+ R(u),

u(§,0) = (5) u(0,t) = d,, 1.5)
ug(0,8) = —3{—3(t) + v/ ([s(t)]* + 4R (1,))}, '
s(0) =0, u->0 as £—

In earlier analysis we have shown that the moving boundary has an initial velocity
§=0(@t?). To keep an accurate representation of the boundary position it is
necessary to account for this singular velocity. This is done by introducing a new
variable 7 = # (in this variable the initial velocity of the boundary is O(1)) and leads
to the system
= 27D (u) Ug+ 27D’ (u) uf + Su; + 27R(u),

(g: ) - g(é) u(o T) = ﬁc’

27ug(0,7) = —3{ —8(7) + v/ ([s(7) ]+ 47°R(a.))},
8(0) =

where dotted quantities now represent d/dr.

A finite-difference approximation of equations (7.6), of implicit form so as to
ensure reasonable accuracy and stability, is constructed by defining a mesh of £ and

=

(7.6)

0, u—>0 as £—> o0,

Phil. Trans. R. Soc. Lond. A (1995)
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0.708
. . .
L]
ds
4 0704
L]
0.700 ! : : —
0.009 0.013 0.018
1/N

Figure 5. The dependence of (t) at t = 16 with 1/N.

t points by {; =ik, 1 <i <M, and ¢, = jk, j > 0, and leads to the discrete system of
the form

wjt —ul = ij+%D(%(u%+l +uj)) ((ugg)gﬂ + (ugg)g)

+%lc7j+%D’(%(u§“ +uj)) ((ug)gﬂ + (ug)%:)

+3(s7 =) (w4 (ue) + 2k RG(u] ™ + 1)), (7.7)

ug =9 % = dc’ s = O’ u];t'f'l = Oa

— 2lor (U (ugh) = — (91— )+ VA(S T — )+ 4k R (D),

where 4] = u(ih, jk) in the usual notation. The above system may be written in a fully
discretized form by replacing all spatial derivatives that occur by quadratically
accurate finite difference representations. As a result of this equations (7.7) are
recognized as a system of N+ 1 nonlinear algebraic equations in the N+ 1 unknowns
wlt .t st These equations were solved using the NaG routine co5NBF which
uses a combination of Newtonian and steepest descent iterations. This method
generally only required three iterations per time step to produce a solution whose
error, in L? norm, was O(107®). The choice of mesh parameters A, k and N is a matter
of trial and error in a nonlinear problem. It was found that the choice # = 0.1, k =
0.05 produced a stable solution for times up to O(25). The effect of truncation of the
infinite domain is well known to have a serious effect on eigenvalue problems for
differential equations. We investigated truncation error as a numerical experiment in
this problem by considering the approach of the velocity of the moving boundary to
the minimum speed travelling wave. Figure 5 shows the value of ds/dt at ¢ = 16 with
the above mesh parameters and N varying. With increasing N, ds/dt rapidly
approaches a value of 0.7046, whereas the exact minimum speed travelling wave for
this example has a speed of 1/4/2. These results give some confidence that our
numerical scheme is quadratically accurate.

To study the evolution of any initial data it is necessary to assign a functional form
to D(u) and R(u); these choices must fall within the classes of functions discussed
earlier in the paper. We chose D(u) =3(3—wu)(i+wu), 4,=3 D,=3% and R(u) =
u(1 —u). This choice of R(u) enables us to integrate the reaction equation for « in the
form

u =

G, exp{—s(x)+t} (7.8)
U, '

+d,exp{—s(x)+1}
in the domain 0 < x < s(t), t > 0.

The evolution of the initial data u(x,0) =} e is shown for ¢ = 0.25, 1.0, 4.0, 9.0
and 16.0 in figure 6 (a—e), with the gradient jump shown on an inset. The variation

Phal. Trans. R. Soc. Lond. A (1995)
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@) 0.8 (b)
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Figure 6. The numerical solutlon of (7.1) with D(u) =33—w) (t+u), Ru) = u(l—u),d, = 0.5,
g(x) = é‘f" at { = (a) 0.25, (b) 1.0, (c) 4.0, (d) 9.0, (e) 16.0.
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4._
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Figure 7. A graph of $(¢) versus ¢ for use in Figure 8. A graph of s(t) versus ¢ for use in
figure 6. figure 6.
0.6
0.4
0.2 -
T T T T 1
0 0.1 0.2

Figure 9. A graph of the small time behaviour of s(t) for use in figure 6.

of ds/d¢ with ¢ is shown in figure 7. The evolution of a fully reacted state behind an
(asymptotically) constant speed moving boundary is clearly illustrated. A graph of
s(t) versus t is shown in figure 8. It can be noted from this graph that there is an initial
rapid acceleration of the moving boundary which slows down over an O(1) timescale
into a constant speed wave form. The speed and form of this constant speed wave
form are in agreement with those of the minimum speed permanent form travelling
wave available to the system (§3). The initial behaviour of the moving boundary is
shown rather more clearly in figure 9, where the predicted O(t%) behaviour is obvious.
Similar behaviour to this was found for a wide variety of initial data.

8. Large time behaviour

This section is concerned with examining the asymptotic structure of the solution
to 1BVP as ¢ — 00. The numerical solutions of §7 have shown that a permanent form
travelling wave develops in 1BVP as ¢t 00, and it is indicated that the prw that

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

/\
\\
& N

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Evolution of travelling waves. 1 359

develops is that which has the minimum propagation speed 24/D,. Here we formally
establish this result, on the assumption that a prw develops as ¢t — 00, via the method
of matched asymptotic expansions.
For t > 1, we have from §5 ((5.1), (5.4)) that,
u(z,t) ~ exp{—(x—0)?/4D,t — (m+1)log (x— o)
+{(m+3)logt+t+logd, }+---} (8.1)

for > O(t) as t - c0. However, this asymptotic expansions fails when = O(t), when
the travelling wave structure appears. Thus when z = O(t) we introduce the
independent variable y = x—s(t) and expand as follows,

u(y, t) ~ uo(y) + " uy (y) +- -

$(t) ~ v+t

(8.2)
(8.3)

where the algebraic correction terms are suggested by the form of (8.1) when x = O(¢).

After substitution from (8.2, 8.3) into (2.61), (2.62) we obtain at leading order as
t— oo the eigenvalue problem (3.2), (3.3) for u,(y) (with y replacing z and v, replacing
v), together with conditions (3.4)—(3.6), which are required to match with expansion
(8.1) as y - 00 and with the asymptotic form (2.72) as y —— co. This problem has a
solution u,(y, v,) for each v, > 24/D, (see §3). Thus we may write

} as t—o0, y=0(1),

u(y, t) ~ exp [logup(y,v,) +O(™Y)] as t—>o0 (8.4)

with y = O(1). We now determine v, by matching (8.1) to (8.4) up to terms of O(t).
We first write the exponent of (8.4), up to O(t), when x > O(t). This gives

E ~ xc (vy) —vyc,(vy) t+o0(t), (8.5)

where K represents the exponent of w and u,(y,v,) is expanded as in §3. Next we
write the exponent of (8.1) in terms of y, and expand up to O(t). After rewriting in
terms of x we arrive at

B ~ 40,/ Do+ (1+303/Dy) t+o(h). (8.6)
The matching principle (see, for example, Van Dyke 1975) requires that (8.5) and
(8.6) agree up to o(t), which requires
ci(vg)+3vy/Dy =0, wvyc,(vy)+305/Dy+1=0. (8.7, 8.8)
We eliminate ¢, (,) between (8.7, 8.8) which leaves —1v2/D,+1 = 0, resulting in
vy = 24/D,, (8.9)

which is the minimum speed of propagation for a PTW (see §3). It remains to show
that (8.7) is satisfied, and this follows automatically on using (8.9) with (3.12). We
have thus established that, when a pTw develops in IBVP as ¢ — 00, it is the pTw with
minimum propagation speed that occurs. '

9. Discussion

We have considered a scalar reaction—diffusion process with autocatalytic kinetics
and a nonlinear variable diffusivity as a simple model for a polymerization process.
In particular the diffusivity is taken to be monotone decreasing in concentration with
finite support [0, @,]. For concentrations u > 4, (< 1) the polymer is assumed to be

Phil. Trans. R. Soc. Lond. A (1995)
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immobile, while remaining mobile at the lower concentrations 0 < u < 4. The fully
reacted state is reached at w = 1, when the polymer is fully immobile. We have
considered the situation that arises when a localized quantity of polymer is used to
initiate the reaction. This leads to a initial-boundary value problem for u(x,?) in
x,t > 0 and we examine piecewise-classical solutions to this problem. The initial data
for u(x,t) is monotone, with compact support, and we have found that

(i) u(zx,t) is classical for 0 < ¢ < ., and monotone decreasing in x. The support of
u(x,t) becomes unbounded at ¢ = 0*.

(ii) an interface develops from xz = 0 at ¢t =t/ and propagates into x > 0 in ¢ > ¢..
This interface at x = s(f) separates u > u, (in 0 < z < s(t)) from 0 <u < w, (in x>
x(t)) and represents a ‘freezing’ front for the polymer, i.e. the polymer is immobile
for 0 < x < s(t), while it is in solution for x > s(t). As t—>t{, §(t) = O([t—t,]7), with
§(t) > 0 in ¢t > t.. The ‘freezing’ front initiates its motion with singular velocity.

(iii) as t— o0, the system approaches a prw structure, selecting the prw of
minimum speed. In line with this §(f)—>2v/D, as t—oc0 and a quasi-steady
polymerization interface is established. The fully reacted state v = 1 is achieved to
the rear of this interface as ¢t - 00.

(iv) Numerical evidence suggests that $(t) has a single minimum in (¢, 00).
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